Rotational Stability Index (RSI) point: postural stability in planar bipeds Goswami Dip∗ and Vadakkepat Prahlad
نویسنده
چکیده
The postural stability of bipedal robots is investigated in perspective of foot-rotation during locomotion. With foot already rotated, the biped is modeled as an underactuated kinematic structure. The stability of such biped robots is analyzed by introducing the concept of rotational stability. The rotational stability investigates whether a biped would lead to a flat-foot posture or the biped would topple over. The rotational stability is quantified as a ground reference point named “rotational stability index (RSI)” point. Conditions are established to achieve rotational stability during biped locomotion using the concept of the RSI point. The applicability of the RSI point is illustrated through experimentation for the landing stability analysis of the bipedal jumping gaits. The traditional stability criteria such as zero-moment point (ZMP) [M. Vukobratovic and B. Borovac, “Zero-moment point – thirty five years of its life,” Int. J. Humanoid Robot. 1(1), 157–173 (2004)] and foot-rotation indicator (FRI) [A. Goswami, “Postural stability of biped robots and the foot-rotation indicator (FRI) point,” Int. J. Robot. Res. 18(6), 523–533 (1999)] are not applicable to analyze biped’s postural stability when foot is already rotated. The RSI point is established as a stability criteria for planar bipedal locomotion in presence of foot rotation.
منابع مشابه
Rotational Stability Index (RSI) point: postural stability in planar bipeds
The postural stability of bipedal robots is investigated in perspective of foot-rotation during locomotion. With foot already rotated, the biped is modeled as an underactuated kinematic structure. The stability of such biped robots is analyzed by introducing the concept of rotational stability. The rotational stability investigates whether a biped would lead to a flat-foot posture or the biped ...
متن کاملBiped Locomotion: Stability, Analysis and Control
In this paper, researches and advances in biped locomotion are reviewed. A detailed survey is presented describing the various research problems and the approaches reported in the literature to analyze and control biped locomotion. A method of Zero-Moment-Point (ZMP) compensation is discussed to improve the stability of locomotion of a biped which is subjected to disturbances. A compensating to...
متن کاملGenetic algorithm-based optimal bipedal walking gait synthesis considering tradeoff between stability margin and speed
The inverse kinematics of a 12 degrees-of-freedom (DOFs) biped robot is formulated in terms of certain parameters. The biped walking gaits are developed using the parameters. The walking gaits are optimized using genetic algorithm (GA). The optimization is carried out considering relative importance of stability margin and walking speed. The stability margin depends on the position of zero-mome...
متن کاملDisturbance rejection by online ZMP compensation
A novel method of Zero-Moment-Point (ZMP) compensation is proposed to improve the stability of locomotion of a biped, which is subjected to disturbances. A compensating torque is injected into the ankle-joint of the foot of the robot to improve stability. The value of the compensating torque is computed from the reading of the force sensors located at the four corners of each foot. The effectiv...
متن کاملSoccer playing humanoid robots: Processing architecture, gait generation and vision system
Research on humanoid robotics in Mechatronics and Automation (MA) Laboratory, Electrical and Computer Engineering (ECE), National University of Singapore (NUS) was started at the beginning of this decade. Various research prototypes for humanoid robots have been designed and are going through evolution over these years. These humanoids have been successfully participating in various robotic soc...
متن کامل